Medium Earth Orbit

An Affordable Alternative To HEO?

AMSAT 2009

Orbiting Satellite Carrying Amateur Radio 2009

Satellite Altitude

- ISS ARISS and External Payloads
- VO-52
- AO-51
- FO-29
- AO-7

350km 605km 780km 1100km 1500km

Orbiting Satellite Carrying Amateur Radio 2009

All Low Earth Orbit.

Range across footprint = 2R { arccos R/ (R+h) }

• ISS

• VO-52

• AO-51

• FO-29

• AO-7

Altitude 350km 605km 780km 1100km 1500km

Satellite Communications Range

Satellite Communications Range

Range Comparison for LEO MEO + HEO

LEO 200 – 2000km MEO 2000 – 25000km GEO 35786km HEO (P3) elliptical Apogee 40,000km+

	Altitude	Communications range km
• AO51	780	6006
• MEO	7000	13687
• MEO	13000	15745
• P3	36000	18091

Footprint of a Medium Earth Orbiting Satellite at an Altitude of 7200km

Advantages and Disadvantages of MEO

Advantages:

- Higher altitude = greater communications range
- A progression / higher skills level from LEO satellites
- Longer pass time. At 7000km altitude, a pass is 90 minutes
- Orbital transfer possible from low cost LEO launch

Advantages and Disadvantages of MEO

- Advantages:
- Higher altitude = greater communications range
- A progression / higher skills level from LEO satellites
- Longer pass time. At 7000km altitude, a pass is 90 minutes
- Orbital transfer possible from low cost LEO launch
- Disadvantages:
- Direct flight to MEO unlikely. Propulsion required.
- Mass of fuel represents loss of payload.
- Van Allen Radiation belts. Risk to hardware.

Van Allen Radiation Belts

Lower radiation belt of protons appx. 1500km to 6000km Upper radiation belt of electrons 13,000 to 20,000km

Van Allen Radiation Belts

Lower radiation belt of protons appx. 1500km to 6000km Upper radiation belt of electrons 13,000 to 20,000km

Van Allen Radiation Belts

Amsat experience in the radiation belts.

- AO-10 operated for 3.5 years in high radiation environment before suffering memory failure. Transponder continued for 10+yrs.
- AO-7 transponder has remained functional at 1500km for 34 years. Large total dose, but 1970's simple components appear tolerant.

Conclusion:

- Any MEOSat would benefit from rad hardened components, as evidence suggests COTS VLSI components vulnerable. Perhaps architecture using ACTEL FPGA as hardware controller would be suitable. Radiation hardened to 300k Rads + latch up immune. \$5k
- As orbital lifetime at 7000km is very high, battery failure should not equal end of mission.

MEO Communications Link Budget

Satellite	Altitude	Range	70cm	2m	
	km	km	path loss	path loss	
AO-51	750	2000	151.4	142dB	
AO-40	35000	50000	179	169.7dB	
MEO	7200	15000	165	155.4dB	

For mode U/V 2m has 13.4dB greater path loss than AO-51 70cm has 14dB less path loss than AO-40

MEO Communications Link Budget

Satellite	Altitude	Range	70cm	<u>2m</u>	
	km	km	path loss	path loss	
AO-51	750	2000	151.4	142dB	
AO-40	35000	50000	179	169.7dB	
MEO	7200	15000	165	155.4dB	

For mode U/V 2m has 13.4dB greater path loss than AO-51 70cm has 14dB less path loss than AO-40

Refer to paper for additional details or check with Jan King's Link budget calculator However 320W ERP on U band uplink will reach the satellite. (30W + 9 element Yagi) At the satellite, 4 Watts output on 2m will be sufficient for the return journey. GS 8dBic antenna

• Due to the geometry of the radiation belts, a high inclination LEO is desirable

- Due to the geometry of the radiation belts, a high inclination LEO is desirable
- Raising orbit from 800km can be achieved in 2 stages. Hohmann transfer

Propulsion technology	ISP
Cold gas	60
Mono propellant	220
Resistojet	120 - 220
Hybrid – Gas Oxidizer solid fuel	250
Bi Propellant	280
Arcjet	500
Hall effect Ion thruster	3000

ISP
60
220
120 - 220
250
280
500
3000

• To calculate required delta V and estimate fuel mass requirements use Excel spreadsheet by Achim Vollhardt DH2VA

M	Microsoft Excel - Copyofmeosat_propulsion						
	Eile Edit View Insert Format Tools Data Window Help Adobe PDF						
] [2]	= 10 E					, <u>c</u> t, +]	
8	E20	<u> </u>	0	D	E	E	0
1	A author Ac	D him Vallhar		U	E mu=GM	2 097555±14	6
2	aution. At	anni vonnai	ut, DHZVA		r earth	5.50755E±14	m
3	circular orb	it 1			r_cann	0070000	
4	height	680	km	enter start	orhit height	in KM here	
5	r1	7058000	m	ontor oran	orbit noight		
6	v1=	7516	m/sec			i i	
7						i i i i i i i i i i i i i i i i i i i	
8							
9	circular tar	get orbit					
10	height	1500	km				0
11	r2	7878000	m				
12	v2=	7115	m/sec				
13							
14	Hohmann 1	Fransfer Orbit					
15	semi-major	-axis	а	7468000	m		
16							
17	V_perigee		7720	m/sec			
18	V_apogee		6916	m/sec			
19							
20							
21	delta_v(1)		204	m/sec			
22	delta_v(2)		198	m/sec			
23	delta_v(tot)		402	m/sec	22	THIS IS REQU	IRED!
24							
25	lsp		200	sec			
26	Launch ma	ISS	25	kg			
27	Empty mas	SS	22	kg			
28	delta_v		251	m/sec		THIS IS POSS	IBLE!
29							

Meosat_propulsion spreadsheet. Achim Vollhardt DH2VA

Propulsion Systems

An example of mono-propellant cubesat propulsion.

Picture by Chris Biddy / Dr. Thomas Svitek of Stella Exploration.

How does AMSAT get to LEO / MEO?

• Should AMSAT fully fund such a project?

• Launches: Historically AMSAT has used test flights –Ariane 4 / 5 but now Ariane and Soyuz are full cost commercial options.

• But there are other launchers currently being developed.

How does AMSAT get to LEO / MEO?

How does AMSAT get to LEO / MEO?

- Maiden flight late 2009 from Kourou
- Max payload 1500kg
- ESA Education dept funded 9 cubesats on maiden flight
- 5 'VERTA' verification flight test program at 6 monthly intervals from maiden flight.
- Ability to deploy multiple payloads into different orbits.

Medium Earth Orbit. An affordable alternative to HEO?

Conclusions:

•Inclusion of simple propulsion can substantially increase coverage from high LEO / MEO

- We have 34 years of experience on the edge of the radiation belts
- Footprint from safe zone is 85% of coverage from HEO
- Arcjet propulsion can provide circular or elliptical MEO from LEO
- Propulsion technology is 'shrinking' in size and DC power requirement
- MEO in the safe zone offers opportunity for real science and partnership with commercial or research organization
- Science package with AMSAT functionality may be supported within ESA Vega verification flights

Thank you