It's time Australia entered space

https://i0.wp.com/www.davidreneke.com/wp-content/uploads/2012/06/Cubesat.jpg

The rise of small spacecraft could launch Australia’s space program, writes Steven Tsitas. Australia has long delayed the development of a space program, placing it in an almost unique position amongst comparable countries.But now we can develop extremely small yet powerful low-cost spacecraft, it’s time to reconsider whether Australia should have its own space program.

The future of a sustainable Australian space program — one that actually designs and builds its own spacecraft, and perhaps a small rocket to launch them — is small, lightweight spacecraft using advanced technology with significant two-way US involvement.My research indicates a spacecraft the size of a typical shoe-box weighing just 8 kilograms, known as a 6U CubeSat, can perform some of the missions of much larger ‘microsatellites’ weighing around 100 kilograms – or roughly the size of a washing machine.

This 10-times size reduction should make the cost of producing a spacecraft 10-times cheaper — around $1 million versus $10 million.The cost may now be low enough to make it politically possible for Australia to have a sustainable space program based on this spacecraft.Utilising this technology would provide economic opportunities for Australia, improve our strategic relationship with the US and inspire the next generation of students to study science, technology, engineering, and mathematics.

Economic opportunities

This is perhaps the last chance for Australia to enter this high growth-rate industry in the capacity of designing and building its own spacecraft.

In terms of economic opportunity, the worldwide space industry has annual revenue of $275 billion and a 9 per cent growth rate. But barriers to entry are high, with established players who are decades along the experience curve — except in the last remaining niche of 8 to 40 kilogram spacecraft.Spacecraft cost their weight in gold despite being made from mostly inexpensive raw materials, indicating significant value is added through design and manufacturing.

Australia has the opportunity to earn significant export income through this technology. A high growth rate industry with the opportunity for significant value addition, such as the early days of the personal computing industry or the internet, is considered a good economic opportunity.The fact that the spacecraft can be designed to perform some of the missions of 100 kilogram microsatellites indicates a level of capability that scientists could exploit by replacing the standard camera payload with an instrument they design.

This in turn could open up a worldwide market, selling spacecraft to scientists (who purchase them with grant money) similar to how scientists buy lab equipment.The small size and ‘mass production’ of the spacecraft (relatively speaking, compared to other spacecraft which are typically highly customised) will provide a relatively cheap way for scientists to fly their experiments in orbital space. There is currently no low-cost way to do this, preventing the exploration of new ideas in a relatively inexpensive and informal fashion, which is the backbone of science.

What is CubeSat, and what could it do?

CubeSats were originally developed in the US for educational purposes with dimensions of only 10 x 10 x 10 cm (called a 1U) and a mass of 1.33 kilograms.

The CubeSat sits in a ‘P-POD’ that looks like a rectangular mailbox, and is attached to the launch adapter connecting a much bigger spacecraft to the rocket launching it. The P-POD is spring loaded to push the CubeSat out once in space. A P-POD can hold three of the 1U CubeSats, and then 2U and 3U CubeSats were developed.

Doubling the size of a 3U CubeSat to 6U leads to a marked increase in this technology’s capabilities.

It could take pictures that, while not as sharp as Google satellite pictures, would be as sharp as some other commercially available satellite pictures such as from the RapidEye spacecraft, in the same five colours of light that are useful for agricultural monitoring. Similar to the RapidEye constellation of microsatellites a constellation of 6U CubeSats could allow daily updates (unlike Google satellite pictures). This could be used to help with agricultural monitoring in the developing world and improve food security.

With a different camera the spacecraft could take photos of the Earth at night. Night imaging makes it easier to map the precise extent of human settlement and the data could potentially be sold to government agencies in other countries concerned with mapping human settlement for planning and demographic purposes.

Strategic relationships

Spacecraft are usually so expensive that the technology used in them is quite conservative, to reduce the risk of failure. But a 10-times reduction in cost allows us to risk advanced technologies because failures, if they result, need not be financially crippling, and we gain valuable experience to make these technologies work.

The pay-off is clear: these advanced technologies endow the smaller spacecraft with enough of the capabilities of much larger spacecraft to carry out some of their missions.

The US is interested in this low cost, light weight, high technology approach, as is the US Defense Advanced Research Projects Agency or DARPA. In particular, its ‘SeeMe’ program is the example that should be followed for an Australian space program, but in a civilian context.

Building up a national capability in small, lightweight (8 to 40 kilograms) advanced technology spacecraft with significant two-way US involvement will allow us to develop a complementary space capability which the US can benefit from.

This is similar to how the US relied on Canada to develop the robotic space arm used on the Space Shuttle. Being a valuable partner in space will improve our strategic relationship with the US.

The rationale for developing this technology would hold true for any country allied with the US, but currently lacking a space program; there is no special reason why it should be Australia that capitalises on this research, other than it is by an Australian.

The economic, strategic and educational rationale for Australia to develop a space program based on the 6U CubeSat does not require that the 6U CubeSats actually be used to observe Australia. The fact that Australia currently receives much satellite data free from other countries does not undermine this argument for an Australian space program. Nor does this argument depend on potential Australian users stating a need for our own satellites.

The radio beeping of Sputnik as it circled the Earth in 1957 galvanized the US into action in space. Hopefully the sound of this opportunity whistling by will stir Australia into the development of a sustainable space program based on the 6U CubeSat.

If Australia fails to grasp this opportunity, others surely will.Source: ABC Science

It’s time Australia entered space

https://i0.wp.com/www.davidreneke.com/wp-content/uploads/2012/06/Cubesat.jpg

The rise of small spacecraft could launch Australia’s space program, writes Steven Tsitas. Australia has long delayed the development of a space program, placing it in an almost unique position amongst comparable countries.But now we can develop extremely small yet powerful low-cost spacecraft, it’s time to reconsider whether Australia should have its own space program.

The future of a sustainable Australian space program — one that actually designs and builds its own spacecraft, and perhaps a small rocket to launch them — is small, lightweight spacecraft using advanced technology with significant two-way US involvement.My research indicates a spacecraft the size of a typical shoe-box weighing just 8 kilograms, known as a 6U CubeSat, can perform some of the missions of much larger ‘microsatellites’ weighing around 100 kilograms – or roughly the size of a washing machine.

This 10-times size reduction should make the cost of producing a spacecraft 10-times cheaper — around $1 million versus $10 million.The cost may now be low enough to make it politically possible for Australia to have a sustainable space program based on this spacecraft.Utilising this technology would provide economic opportunities for Australia, improve our strategic relationship with the US and inspire the next generation of students to study science, technology, engineering, and mathematics.

Economic opportunities

This is perhaps the last chance for Australia to enter this high growth-rate industry in the capacity of designing and building its own spacecraft.

In terms of economic opportunity, the worldwide space industry has annual revenue of $275 billion and a 9 per cent growth rate. But barriers to entry are high, with established players who are decades along the experience curve — except in the last remaining niche of 8 to 40 kilogram spacecraft.Spacecraft cost their weight in gold despite being made from mostly inexpensive raw materials, indicating significant value is added through design and manufacturing.

Australia has the opportunity to earn significant export income through this technology. A high growth rate industry with the opportunity for significant value addition, such as the early days of the personal computing industry or the internet, is considered a good economic opportunity.The fact that the spacecraft can be designed to perform some of the missions of 100 kilogram microsatellites indicates a level of capability that scientists could exploit by replacing the standard camera payload with an instrument they design.

This in turn could open up a worldwide market, selling spacecraft to scientists (who purchase them with grant money) similar to how scientists buy lab equipment.The small size and ‘mass production’ of the spacecraft (relatively speaking, compared to other spacecraft which are typically highly customised) will provide a relatively cheap way for scientists to fly their experiments in orbital space. There is currently no low-cost way to do this, preventing the exploration of new ideas in a relatively inexpensive and informal fashion, which is the backbone of science.

What is CubeSat, and what could it do?

CubeSats were originally developed in the US for educational purposes with dimensions of only 10 x 10 x 10 cm (called a 1U) and a mass of 1.33 kilograms.

The CubeSat sits in a ‘P-POD’ that looks like a rectangular mailbox, and is attached to the launch adapter connecting a much bigger spacecraft to the rocket launching it. The P-POD is spring loaded to push the CubeSat out once in space. A P-POD can hold three of the 1U CubeSats, and then 2U and 3U CubeSats were developed.

Doubling the size of a 3U CubeSat to 6U leads to a marked increase in this technology’s capabilities.

It could take pictures that, while not as sharp as Google satellite pictures, would be as sharp as some other commercially available satellite pictures such as from the RapidEye spacecraft, in the same five colours of light that are useful for agricultural monitoring. Similar to the RapidEye constellation of microsatellites a constellation of 6U CubeSats could allow daily updates (unlike Google satellite pictures). This could be used to help with agricultural monitoring in the developing world and improve food security.

With a different camera the spacecraft could take photos of the Earth at night. Night imaging makes it easier to map the precise extent of human settlement and the data could potentially be sold to government agencies in other countries concerned with mapping human settlement for planning and demographic purposes.

Strategic relationships

Spacecraft are usually so expensive that the technology used in them is quite conservative, to reduce the risk of failure. But a 10-times reduction in cost allows us to risk advanced technologies because failures, if they result, need not be financially crippling, and we gain valuable experience to make these technologies work.

The pay-off is clear: these advanced technologies endow the smaller spacecraft with enough of the capabilities of much larger spacecraft to carry out some of their missions.

The US is interested in this low cost, light weight, high technology approach, as is the US Defense Advanced Research Projects Agency or DARPA. In particular, its ‘SeeMe’ program is the example that should be followed for an Australian space program, but in a civilian context.

Building up a national capability in small, lightweight (8 to 40 kilograms) advanced technology spacecraft with significant two-way US involvement will allow us to develop a complementary space capability which the US can benefit from.

This is similar to how the US relied on Canada to develop the robotic space arm used on the Space Shuttle. Being a valuable partner in space will improve our strategic relationship with the US.

The rationale for developing this technology would hold true for any country allied with the US, but currently lacking a space program; there is no special reason why it should be Australia that capitalises on this research, other than it is by an Australian.

The economic, strategic and educational rationale for Australia to develop a space program based on the 6U CubeSat does not require that the 6U CubeSats actually be used to observe Australia. The fact that Australia currently receives much satellite data free from other countries does not undermine this argument for an Australian space program. Nor does this argument depend on potential Australian users stating a need for our own satellites.

The radio beeping of Sputnik as it circled the Earth in 1957 galvanized the US into action in space. Hopefully the sound of this opportunity whistling by will stir Australia into the development of a sustainable space program based on the 6U CubeSat.

If Australia fails to grasp this opportunity, others surely will.Source: ABC Science

How Disposable, Networked Satellites Will Democratize Space

A New Standard	 Satoshi

A New Standard Satoshi

In 1999, professors Robert Twiggs of Stanford University and Jordi Puig-Suari of California Polytechnic State University began to standardize the satellite business. They designed a small orbital unit-–a four-inch cube with little metal feet–-that was wide enough for solar cells, basing their design on a plastic display box for Beanie Babies. Their “CubeSat” had enough room for a computer motherboard and a few other parts necessary to do limited experiments in space, such as monitoring weather or photographing Earth. The design would significantly lower the cost for students to conduct experiments in space. CubeSats could be launched at the same time and piggyback on larger, more expensive missions, mitigating the expense of getting satellites into orbit.

With the design complete, Puig-Suari began to work with the three U.S. agencies that regularly launch satellites—the National Reconnaissance Office, the Department of Defense’s Space Test Program and NASA—to convince them to build CubeSat-ready berths into as many launches as possible. Meanwhile, the aerospace engineering department at CalPoly has become a sort of standards clearinghouse for NASA, testing each academic satellite to make sure the box won’t shake itself apart and cast shrapnel through the rocket during launch. CalPoly and Stanford maintain a forum and post all standards on CubeSat.org.

With so many scheduled launches, an undergraduate engineering student […] can design one during her freshman year and see it reach space before graduation.Twiggs and Puig-Suari’s efforts are paying off. Since 2001, about 50 CubeSats have entered space. The pair sent up their first in 2003, spending $100,000 in grant money to stow it on a Russian Dnepr launch. When the SpaceX Falcon 9 rocket launched in December 2009, six CubSats were aboard, packed three units at a time inside a spring-loaded jack-in-the-box container called a Poly-Picosatellite Orbital Deployer (P-POD), that was developed at CalPoly. After the payload deployed, the door of the P-POD popped open and the spring pushed all three satellites into orbit, where they unfurled solar panels and began transmitting information to their creators below. This year at least three rockets will launch with room for CubeSats, including the NROL-36, which can fit 11.

With so many scheduled launches, an undergraduate engineering student at one of the nearly 100 schools making CubeSats can design one during her freshman year and see it reach space before graduation. When Roland Coelho, a CalPoly graduate student, was filling out a preflight survey for his CubeSat last year, the range safety officer at Vandenberg Air Force Base in California approached him in confusion. “It asks whether you’ll need a military convoy to escort you,” the officer said. “You don’t?”

“Oh, that’s right,” Coelho replied. “It fits in the trunk of my car.”

Many academic CubeSats currently in orbit report their position, battery life and findings to ham-radio operators on Earth, who forward the information to the originating school. But projects are becoming more ambitious. The Air Force plans to use two networked CubeSats to monitor the Earth’s atmosphere and provide the world’s first real-time look at space weather. Carl Brandon of Vermont Technical College is developing an ion-drive CubeSat system that he says will be able to propel itself to the moon.

Puig-Suari and Charles Scott MacGillivray, who ran a small team of satellite developers at Boeing until last year, have now spun off their own company, called Tyvak, which produces CubeSats on a contract basis for private clients and the U.S. government. A marketplace of standardized components has also emerged, led by Stanford engineering professor Andrew Kalman’s Pumpkin, Inc., which has sold CubeSat kits to more than 100 universities, governments and nonprofit organizations. Kalman says that once people begin to think of CubeSats as disposable, building them out of off-the-shelf components and sending them up 100 at a time, the devices will truly have come of age. “If we launch a group of satellites built out of Android phones, you’ll have app developers able to dream up what to put in space,” he says.

A CubeSat today can cost as little as $100,000 to build, and buying a berth on something like a Falcon 9 runs around $250,000. In the aerospace industry, that’s spare change. The low cost also makes losing a CubeSat tolerable. Last March, a rocket carrying NASA’s Glory satellite and three CubeSats crashed into the ocean. “We were bummed,” says Coelho, who watched the failed launch. “But the NASA guys had lost a $400 million satellite.” One of the lost CubeSats was, in fact, a duplicate. In October, its twin made it into space.

CubeSat:  Austin Williams/Polysat, California Polytechnic University

HOW TO READY A CUBESAT FOR SPACE

The pre-launch guidelines for CubeSats stipulate that the object must be 10 by 10 by 11 centimeters (the extra centimeter is for the little metal feet) and no heavier than 1.3 kilograms. A satellite must remain fully deactivated—no power of any kind—until it exits its spring-loaded launch container; errant signals could scramble the electronics of the primary payload or the rocket’s guidance system. And teams must submit a detailed plan for de-orbiting—tipping the satellite such that it disintegrates in the atmosphere—within five years of leaving Earth, or risk having their satellite killed before it ever takes off.

Cubesats and low cost launchers open space to many more users

Cubesats and low cost launchers open space to many more usersTowards the end of 2012, a tiny satellite the shape of a cd rack will be blasted into space on top of a converted intercontinental ballistic missile, then be hurled into orbit by a spring-loaded pod. Although dwarfed by communications and military satellites, the launch of the UK Space Agency’s first nanosatellite will mark a milestone: kicking off a satellite industry for the rest of us.

By the time UKube-1 launches, it will have taken less than two years to move from concept to orbit – a dramatic reduction in time compared to most satellite launches – and will open space research to hundreds of organisations.

Clyde Space only got the go-ahead to proceed with its design from the newly formed UK Space Agency in November 2011. But speed is the essence of development in the burgeoning area of nanosatellites and calls for a different approach. The boxy shape of the UK‘s first official ‘cubesat’ is a testament to an approach that is all about using commercial off the shelf (COTS) parts and concepts to open space up to a wider variety of users.

Jamie Bowman, principal embedded systems engineer at UKube-1 participant Steepest Ascent, says: “The use of COTS means the barrier to entry for a small company is lower. Within the cubesat community, we are trying to commercialise the concept.”

Speaking at the 2011 Summer CubeSat Workshop earlier in the year, Clyde Space CEO Craig Clark said the rationale behind UKube-1 is to demonstrate the UK‘s space capability, as well as to encourage students at schools and universities to take part in experiments aboard the probe. The five payloads represent a mix of commercial and academic projects.

For example, alongside a payload that will allow avionics company Astrium to build more secure satellites by using cosmic radiation to generate true random numbers for use in encryption is myPocketQub, a host for experiments that will allow one user every day for a year to upload software and run it. “It’s an open source approach to doing space experimentation,” says Clark.

The payload experiments are coordinated through the Mission Interface Computer (MIC) developed by Steepest Ascent. “The MIC performs all the housekeeping tasks, such as gathering data, processing it and getting it back down to the ground,” says Bowman.

The original concept for the cubesat came from Stanford University professor Bob Twiggs, who worked with colleagues at his institution and Cal Poly to develop the hardware.

According to Cal Poly professor Jordi Puig-Suari, the overall design of the cubesat came down to the availability of components at the end of the 1990s. They settled on a 10cm cube as this could comfortably hold a small stack of PC/104 embedded computer and peripheral boards.

The basic cube, however, proved too restrictive and even the first launch violated the original standard. One of the satellites was a double height or 2U model; the other, an even taller 3U design. But, by adopting the same 10 x 10cm footprint, a 1U, 2U or 3U probes can be loaded into a spring loaded Poly-PicoSatellite Orbital Deployer (P-POD), which can accommodate up to three cubesats. Standardisation on footprint makes booking a launch far less of an issue: it’s still possible to mix and match cubesat sizes within a single P-POD.

By 2010, more than 30 cubesats had made it into orbit. The form factor is now common enough for launch companies to put P-PODs into their rockets without knowing who will rent that space beforehand. Cubesat developers do not have to aim for a specific launch slot; they can develop their system in the knowledge that someone, somewhere will be willing to send it into space. The ready availability of launchers makes it easier for companies to get involved in space projects: one of the reasons why UKube-1 is seen as a useful first step in building the UK‘s expertise in satellite technology.

Steepest Ascent itself was not created as a space company. “But we want to be able to allow people to do signal processing in space,” says Bowman. “We started our first space contract two and a half years ago, developing a payload. Then came the opportunity to fund a PhD position in space technology. Then we thought ‘what about cube satellites?’ And maybe how to communicate between cubesats: you might fly a swarm and want to communicate between them.

“At about the same time, the space innovation and growth team was being formed by the UK Government. Through that, we met Clyde Space, which was leading the UK project and it had a requirement to develop an onboard computer,” Bowman explains.

The focus on low development time and cost results in different approaches than for conventional satellite development. Whereas many large satellites will employ components that have gone through years of testing to determine their behaviour under the levels of intense radiation encountered beyond the Earth’s atmosphere, cubesat developers will often use standard commercial parts. One such part is Texas Instruments’ MSP430 microcontroller. Originally developed for smart energy meters, the mcu has a reputation for very low power consumption, vitally important to a satellite that will be put into a sun synchronous orbit. Deriving all its power from solar panels, the satellite will enter eclipse for some of the day and the designers need to be sure its batteries will not run dry during that time, so the focus is on low power silicon.

“The MSP430 is kind of the mcu of choice for cubesats. A lot of companies have gone down that route, but they don’t do a space version. A lot comes down to how you use COTS in space,” says Bowman.

Companies such as Steepest Ascent put time into finding ways to avoid the problems caused by cosmic radiation that can knock unhardened electronics completely out of action.

One approach to ameliorating the effects of radiation is to use triple modular redundancy (TMR). Three sets of electronic circuit are used for each function and vote on the output to weed out errors caused by stray alpha particles that may flip a control or memory bit.
However, this is expensive to do across the board.

Steepest Ascent has focused its use of TMR on the core hardware state machines and I/O ports. The company chose to use an fpga from Microsemi’s antifuse based SX family. Antifuse devices are commonly used on satellites because the programming elements are almost immune to radiation, so the protection only needs to focus on latches and registers. TMR is used in some of the SX based circuits to ensure ‘the I/O signals are as clean as possible’, says Bowman.

Focused use of TMR makes it possible to relax the radiation hardness requirements on other parts of the board. For the signal processing portion of the MIC, Steepest Ascent chose to go with another fpga.

“We do a lot of mcu and fpga hybrids and we tend to favour doing dsp on fpgas,” says Bowman. “We can do operations in parallel and can tailor bit widths. If 27bit precision is all you need, you have an overhead trying to use a 32bit dsp for those calculations. We do a lot of work on LTE for wireless communications and, in those technologies, it’s probably going to be an array of fpgas, rather than a dsp. You can achieve teraMAC performance and you could not get that from one dsp.”

For the signal processing fpga, Steepest Ascent picked another Microsemi part – this time, the flash based ProASIC 3L. “ProASIC 3L parts are not quite as radiation tolerant as the SX antifuse parts,” says Bowman. “However, it’s still more than what we need for this project, plus we can also get an ARM core onboard.”

Microsemi licenses the ARM Cortex-M1 microprocessor core so that it can be implemented by its fpga customers.

“The ARM core has a lot more processing power than the MSP430,” says Bowman. “But, at the same time, cubesats have to be very, very power efficient. So the idea was to keep the MSP430 running and power down the fpga when it is not needed.”

Runtime checks will monitor the behaviour of the non-TMR circuits and allow one of the processors to power cycle the other if it starts misbehaving. “We took some other precautions, such as not using PLLs: they don’t like space at all,” says Bowman.

The MIC will use several gigabytes of memory – again based on commercial devices. “It’s a complicated design for cubesats,” says Bowman. “We have spent a lot of time on component selection: it’s a matter of gathering different test reports. However, although many 4Gbit devices have been tested, we are using 8Gbit parts. There is a question of how much you can extrapolate from previous tests. We think we have made a sound choice, but we can’t go and test these devices ourselves.”

At the circuit level, the memories are redundant and powered down between uses. According to Clark, a good rule of thumb among the cubesat fraternity is to use different makes of memory as they are unlikely to share identical failure modes.

The UKube-1 project is pressing ahead with the construction of a flight model that should be ready by the end of January and which will be used in environmental tests. Then the final satellite will be put together and enter its testing phase in July. “We are almost in the home straight: it will all happen in the next four or five months,” says Bowman.

After that, the cubesat will be packed into its P-POD ready to be flung out into space, falling into orbit around 650km above the surface of the Earth. According to Clark, the mission is scheduled to last for just one year, but UKube-1 has been designed to last for at least four.

“The mission is dedicated to payloads and gathering data from them and then it will be about gathering performance statistics. After that we would hand it over to the amateur satellite people. We can learn a lot about the process of operating a satellite like this during that time,” says Bowman.

In the UKube-1 mission, the signal processing functions on the main fpga will be fixed. “In future missions, we would look at reprogramming it more regularly to change the algorithms to suit different payloads,” says Bowman. Missions such as UKube-1 will make it possible to explore how techniques traditionally considered too risky to pursue – such as reprogramming fpgas in orbit – can be exploited in future swarms of low cost satellites.

Author
Chris Edwards

Supporting Information

Downloads
39400P16-18.pdf

Websites
http://www.clyde-space.com
http://www.microsemi.com
http://www.steepestascent.com

Companies
Clyde Space Ltd
Microsemi

This material is protected by Findlay Media copyright
See Terms and Conditions.
One-off usage is permitted but bulk copying is not.
For multiple copies contact the sales team.