Bright sparks redefine propulsion

CubeSats, like STRaND-1, are essential for the breakthrough of new technologies in the space industry. The relatively inexpensive CubeSat enables institutes and companies to test technologies and gain valuable flight heritage without risking millions (or even billions) of pounds of investment.

STRaND-1, the joint project between SSTL and the Surrey Space Centre (SSC), is one of these exciting experimental satellites and it’s not only its smartphone that makes it exceptional. Engineers at the Surrey Space Centre have also developed a unique mass and power saving plasma propulsion system to fly on the satellite. This system will be the first propulsive technology to provide very precise attitude control and pointing.

Pulsed Plasma Thruster flight hardware
Pulsed Plasma Thruster flight hardware

STRaND-1 will carry both a Resistojet and a Pulsed Plasma Thruster (PPT) module on board. The PPT will consist of eight micro thrusters; four located at the top of the satellite stack and four located at the bottom. The micro thrusters operate by discharging a discrete train of pulses. Each pulse is a plasma discharge that forms between two metal electrodes, much like a small lightning bolt or electrical spark. The spark erodes the metal from the electrodes and electromagnetics accelerate the eroded mass out of the nozzle, which produces thrust. This is known as the Lorentz force.

Surrey Space Centre has developed two ways of minimising mass and volume. Firstly, the electrodes which form the plasma discharge also function as the propellant. As metal is highly dense, more propellant can be stored in a smaller volume than that of conventional chemical propulsion systems. The total weight of the propellant for the whole STRaND-1 PPT system is just 10g.

Secondly, Surrey Space Centre’s novel discharge initiation system uses a mechanical contact trigger built out of a tiny piezoelectric motor only 5mm in length. This takes up less space than the conventional spark plug system which requires volume intensive circuitry.

The Pulsed Plasma Thruster module firing
The Pulsed Plasma Thruster module firing

Not only does SSC’s PPT module reduce mass and volume, it also uses less power than other propulsion systems. Between each pulse, energy is stored in a capacitor. This substantially reduces the power requirements for the thruster, making it perfect for small satellites such as STRaND-1. In fact, the power requirement for the system flying on STRaND-1 is only 1.5W, about the power needed to operate a bicycle light.

If successful, the STRaND-1 PPT will be the first propulsion system to provide full axis control on this class of satellite. Having an active propulsion system in orbit would open up new possibilities for future CubeSat missions like rendezvous and docking, and flyby inspection. The flight heritage and experience gained in using the PPT on STRaND-1 could then be transferred and scaled for other SSTL missions providing a low cost, mass and volume solution for future endeavours.

For updates on STRaND-1, visit the Facebook page or follow @SurreyNanosats on Twitter!

Read about STRaND-1 in a free sample issue of OSCAR News at http://www.uk.amsat.org/on_193_final.pdf

Smart Phone Satellite Presentation Video

In the United Kingdom volunteers from SSTL and SSC are using their own, free time to develop STRaND-1 a CubeSat that will carry a Smart Phone.

However Smart Phone satellites aren’t only being developed in the UK, the United States is developing one as well. Radio amateur Mike Safyan KJ6MVL gave a presentation on the US PhoneSat to the 2011 TAPR Digital Communications Conference and thanks to ARVN a video is now available.

A PhoneSat Really? Use an off the shelf smart phone as the guts of a satellite? Yep, that’s what radio amateur Mike Safyan KJ6MVL is doing over at NASA. He described the project in his talk at the 2011 ARRL/TAPR DCC in Baltimore.

Of course, todays phones have way more computer power than typical satellites, updated phones are released like every 5 minutes, and they’re dirt cheap (relatively). But can they hold up and do the job in the rigors of space? So far, Mike’s sent his phone up on a near space balloon and a small rocket, and yes, it works. A full CubeSat launch is next for Mike and crew.

Watch 2011 DCC – PhoneSat

Make: magazine – PhoneSat Aims to Send a Cellphone into Space (video)
http://blog.makezine.com/archive/2011/10/phonesat-aims-to-send-a-cellphone-into-space-video.html

A six page article on UK PhoneSat STRaND-1 appeared in the Spring issue of the AMSAT-UK publication OSCAR News available for download at http://www.uk.amsat.org/on_193_final.pdf

UK Smartphone CubeSat STRaND-1 http://www.uk.amsat.org/2011/09/07/uk-smartphone-cubesat-strand-1/

Amateur Radio Video News (ARVN) http://www.arvn.tv/